WHAT IT IS and WHAT TO DO NEXT, Volume 2: Is It What It Is?
I am writing this shortly after dawn, in our garden. There are succulents to my right and cucumbers to my left and a pot of lemon balm not quite close enough for me to reach out and pluck one of its leaves. There are two tomato plants and three pepper plants; there were three spinach plants, with ten inches in between, but the spinach has since covered so much ground as to necessitate a daily decimation, by us or by rabbits (Larry, like Mr. MacGregor, has put up a net). There are raspberries. There is a lemon tree. There are irises, though their blooms fell with the last heavy rain.
But I do not want to write about the garden—at least, not more than one paragraph.
I want to write about the lake.
We were at the Cathedral, Larry and me—and this feels like the most intimate thing I’ve written thus far, this tiny bit of information that initially reveals nothing more than the fact that Larry calls a particular cove the Cathedral (as all of the coves in this 18,600-acre lake must have names [and many do, in truth [[although this cove is only named in narrative]]).
In and in and in we go, until Larry’s pontoon is anchored precisely at the transept. This word we also use, in public, without concern; we’ll-meet-you-in-the-Cathedral-at-the-transept, and all that is revealed is our basic understanding of architecture and isomorphism—and, of course, the location of our boat.
But you must know, by now, what this information actually intimates. The words that are never, ever said aloud—but may be written at dawn, in a garden, and read at a distance.
It is not, simply, that we go to the Cathedral instead of church. That is a joke that we pull out, along with my homemade bread and Larry’s favorite bourbon, when friends join us at our pontoon’s small table.
It is that we go to the Cathedral, alone, to worship.
We go for the same reason people have always gone to places where nave meets apse, where the literal are invited to become metaphoric. In this case we immerse ourselves in metaphor—it is often the first thing we do after dropping our anchor and raising the flag that indicates this water contains swimmers—and by doing so prepare ourselves for communion. A weekly recognition, blessed and broken into re-cognition. An exchange of ideas that changes the way we experience the world.
But this—even this—is just pretext. Here is the incident that incited this exposition; a story that could have been spoken in three lines:
“We might find the Philosopher’s Stone,” Larry told me, the last time we were at the Cathedral together.
“Do you mean that we might live forever?”
“No,” Larry said. “I mean that as long as we are drawing breath, we might remain alive.”
In which I propose a theory of How One Learns.
At the beginning of the year (which is to say, before I had taken any of the actions that led to the asking of the Question [which is also to say that I was taking the actions that led to the actions that led to the asking of the Question [[as all actions tend to lead to other actions, and if you’re careful [[[or lucky]]] your actions will lead you where you want to go]]), I proposed a theory of how one learns.
Originally I proposed it as a hypothesis, as any good scientist might.
Then it was proved to be true—or at least as true as it could have been, until Larry and I got both better analogies and better data.
A better way to phrase it was that my theory was initially proved to yield consistent, predictable results.
Subsequent iterations of the theory were also proved to yield consistent, predictable results. These results were both more effective and more efficient, moving both the theorist and the practitioner closer to excellence (and Magic). I am anticipating that Larry and I may develop even more elegant iterations before I finish writing this book (and, if our work continues, before you finish reading it).
But I will explain the original theory first, and in doing so tell you how it was developed.
I have been a full-time freelance writer since 2012. When I initially began freelancing, I was paid 3 cents a word; much of my current work pays $1 a word, and I no longer accept clients that pay less than 50 cents a word. This means that I am able to gross six figures annually in about 8 hours of applied work per week (which works out to a little more than 90 minutes per day, Monday through Friday)—but I only know that because I have been tracking my freelance output since I began.
Ten years ago, I wrote 600 words an hour on average, giving me a pretax hourly rate of ~$18. Right now, I write 1,000 words an hour on average, giving me a pretax hourly rate of ~$450.
I could tell you that I achieved this increase by increasing the value I added to clients, which is true.
But that’s the kind of statement that is impossible to replicate, and in many ways impossible to parse. If I were to ask you “how can you increase the value you add to your freelance clients,” you might say something like “be a better freelancer,” which begs a question instead of answering it. If you thought about it for five minutes instead of five seconds, you might say “I could ask my clients what I could do to add more value,” which is closer to the correct answer—but that kind of question is likely to reduce your value rather than adding to it, since it takes up a portion of your client’s time with something that does not directly lead towards the translation of words to money (which is your client’s goal as much as it is yours).
You might go back over any editorial notes you have received, noting any suggestions that appear more than once and incorporating those suggestions into all forthgoing work—but if you’re the kind of freelancer who wants to earn $1 a word someday, you’re already doing that.
Or, you could do what I started doing as soon as I started freelancing.
You could track your weekly work along two metrics: time spent and money earned.
Then, at the end of each week, you could ask yourself what you needed to do to increase money earned and decrease time spent. If you are currently averaging 300 words an hour, for example, what could you do to increase that rate to 350—or, better still, 500? Would you need to prepare better notes in advance, eliminate online distractions, or work at a different time of day? Would you create templates for personal essays, news stories, and short-form informative articles so you could begin each new piece already knowing how to piece it together, including which information should be typed into each paragraph?
Likewise, if you are currently averaging 3 cents a word, what could you do to increase that rate to 5 cents a word? Would you need to ask for a raise, seek out a new client or—well, those are really the only two ways to increase your pay rate, so we’ll stop there.
We’ll start, instead, with the question I asked Larry at the beginning of 2022:
“Why is it that I know how many words I can write per hour, but not how many measures of music I can learn per hour?”
This was the kind of question both of us could answer, correctly, without having to think for five minutes first. I knew how many words I could write per hour because I had been logging my freelance output for the past ten years. I did not know how many measures of music I could learn per hour because I had not been logging my piano practice output in a similar way. I was logging input, which was to say that I knew how much time I was spending at the piano every day, but I was not attempting to make any connection between time spent and measures learned.
I began the next morning.
That evening, I told Larry that before I could calculate how many measures I could learn per hour, I had to understand how the learning process worked.
You might ask, at this point (and if you did not ask, it’s worth asking yourself why [because, if you are reading this story with the intent I programmed into it, you should understand by now that certain sections function as functions, designed to return a specific value [[all books are like this, really; it’s just that mine is explicit about it]] [[and since you may not know ahead of time which sections these might be, it’s best to treat the entire book as an interactive text [which means stop, think, and ask]]]) why I did not also have to calculate what it meant to learn a measure of music.
This is because the verb to learn has two meanings—the first describes the process, and the second describes the result.
If to learn is applied correctly, it yields a result in direct proportion to the process of its application.
(This also happens if to learn is applied incorrectly.)
To learn a measure of music could mean “being able to play the music evenly and accurately while looking at the score.”
It could also mean “being able to play the music evenly and accurately from memory.”
Eventually it might mean “being able to play the music evenly and accurately from memory, consistently, in a performance setting.”
(If you read the above and asked yourself why “evenly” and “accurately” are two separate words—that is, why tempo accuracy is not automatically included as part of note accuracy—you are reading this book accurately. Unfortunately, I am still at the part of the narrative where I treat them as two separate things [which gives you the advantage, since you now know something that I do not [[as of this writing]] [[but not of this writing]]].)
To learn is an infinite series of ones—a new truth discovered, a new falsehood left behind.
When I developed my hypothesis, however, I mistakenly described the learning process as an infinite series of wins.
It took me thirteen days from asking myself how many measures of music could I learn per hour to developing a workable hypothesis of how the learning process works.
Here’s how the hypothesis was originally structured—which is to say, here’s how I described it on my (now defunct) blog on January 27, 2022, two days after discovery:
- Define win condition.
- Define action you are going to take to achieve win condition.
- Take defined action.
- Evaluate action both against its original definition (that is, did you do what you said you were going to do or did you do something else) and against the win condition.
- If you’re me, write down the results. If you’re L, keep them in your head. (He keeps all of this in his head. I have no idea how his head can handle it. He told me that he might have more storage space in his working memory because he thinks of things in bits and symbols instead of words.)
- Ask yourself what is keeping you from achieving your win condition. Describe it as specifically as possible.
- If you’re me, write it down.
- Define action you are going to take to solve/address/eliminate obstacle preventing win condition.
- Repeat 2-7 until win condition is achieved.
- STOP.
As soon as I told Larry that I was testing a new hypothesis at the piano, he told me that he had been able to tell that I was working on something that had made my practice more effective. Most piano practice, after all, is based on an ineffective practice of learning through mindless repetition—that is, by running a passage (or, god forbid, an entire piece) again and again and again, until many (but not all) of the wrinkles are ironed out.
This time I don’t need to ask you to think, because I know what you’re thinking. Some of you are arguing that this kind of repetition works—and it does, in the sense that you can learn a piece well enough to play an elementary school recital or pass an undergraduate jury—and the rest of you are arguing that this kind of repetition is not mindless.
If that’s the case, I’ll ask you to think about this: In your last practice session, whether you were studying piano or chess or logic, can you describe what you thought about between each repetition? Did you take the time to evaluate how the previous pass had gone and ask yourself how it could be improved? Did you identify your errors, ask yourself what you did wrong, and create a mental call (or, as Larry puts it, a positive control) to help you remember what you’d like to do instead?
Or did you just start from the beginning again, telling yourself “this time I’ll get it right?”
I didn’t get my hypothesis right, the first time—and much of this section of the book will be devoted to how I improved it (which, coincidentally enough [by which I mean not coincidentally at all] is exactly the same way one improves a piece of music). The subsection of the book that you are currently reading will now pause to acknowledge the three theorists who helped me both develop and prove my own—because after Larry noted that both my hypothesis and my practice were yielding better results, he reminded me that I hadn’t been the first person to discover them.
If you know anything about practice, you probably know the work of Anders Ericsson and Robert Pool. Ericsson is credited with coining the concept of deliberate practice, which means both “being deliberate with your practice” and “taking time to deliberate as you practice.” Here’s how Ericsson and Pool describe their process—which can also be described as the learning process—in their book Peak: Secrets from the New Science of Expertise:
Deliberate practice both produces and depends on effective mental representations. Improving performance goes hand in hand with improving mental representations; as one’s performance improves, the representations become more detailed and effective, in turn making it possible to improve even more. Mental representations make it possible to monitor how one is doing, both in practice and in actual performance. They show the right way to do something and allow one to notice when doing something wrong and to correct it.
Deliberate practice, in this case, is a method of going from 0 to 1.
So is David Allen’s Getting Things Done productivity system.
If you are already familiar with Allen’s work, you probably recognized how much of my hypothesis derives directly from Getting Things Done: The Art of Stress-Free Productivity. In fact, much of my life derives directly from Getting Things Done, which I would consider the third-most important book I ever encountered (the first is the double Alice; the second will remain adjacent to a mystery, though you might be able to guess what it is from the preface to the previous volume).
I first read GTD in 2008, when I was an executive assistant at a nuclear nonproliferation think tank (I got the job after grad school [when I went to a hiring agency, completed the hour-long computer literacy exam in 13 minutes, and asked what I needed to do to earn $50,000 a year]). The idea that a task could be broken down into its component parts was not new to me; the idea that a task needed to be broken down into its smallest component parts and each action needed to be incorporated into a large-scale plan was.
Once I understood that all work could—no, must—be divided into a series of next actions (as Allen put it) and the actions themselves could—no, must—be assigned either fungible or non-fungible slots within a schedule or calendar, I could no longer experience the world in anything like my previous way.
My productivity improved.
So did everything else I was doing—because all doing, as it turns out, is done in the same way.
When I began developing my hypothesis, and noting how similar my workflow was to Allen’s, I asked myself whether this was simply because I had been practicing GTD as originally written (including a daily processing of all inboxes to zero and a weekly review), since I was 29 years old. This was the correct question to ask, at this point—and the correct answer, as Larry and I quickly agreed, was that the workflows had to be similar because the work is identical. I had not previously understood that how one gets things done is also how one learns—but, of course, it has to be.
If we phrased this in the language of Lewis Carroll’s Symbolic Logic, it might come out like this:
Some done things are learned.
The question then becomes whether this is a double proposition—that is, whether it derives from all done things are learned. At first glance you might say to yourself that not all done things are learned, in the sense that it is extremely possible to practice the piano every day, or scan your inboxes every few minutes, without evaluating or improving either your processes or your knowledge. You could in fact miss the exact same note every time you run a four-bar section of your piano repertoire, even though you begin every run swearing that you won’t (and end every run literally swearing). Does this suggest not all done things are learned? Or does it suggest that your doing has in fact led to a specific learning—not of the correct note, but of an incorrect one?
Let’s play the phrase again, this time a little more accurately:
All done things are learned.
This means that a person interested in learning something new must start by doing something new. As you begin the journey from 0 to 1, false to true, fool to magician, old to new, you must continually evaluate your actions—first against the actions you told yourself you were going to take, to make sure you understand what you actually did; second against the results you told yourself you wanted to achieve, to make sure you understand what you actually learned.
This is why the fourth step in my hypothetical learning schema is so crucial—why, when I read it aloud to Larry, he said “that’s gold.”
This is (coincidentally [or not coincidentally at all]) also the fourth step in the learning process Lewis Carroll outlines at the beginning of his first volume of Symbolic Logic.
Don’t begin any fresh Chapter, or Section, until you are certain that you thoroughly understand the whole book up to that point, and that you have worked, correctly, most if not all of the examples which have been set. So long as you are conscious that all the land you have passed through is absolutely conquered, and that you are leaving no unsolved difficulties behind you, which will be sure to turn up again later on, your triumphal progress will be easy and delightful. Otherwise, you will find your state of puzzlement get worse and worse as you proceed, till you give up the whole thing in utter disgust.
The alchemy of learning—that is, what Larry called gold—happens in this fourth step, which I have now explained in four different ways. At this point, I might suggest that you try it out, on whatever it is you are currently trying to learn—and if you don’t already have a keyboard or a chessboard (or another analogous unlearned undertaking) in front of you, I might suggest that you get a copy of Lewis Carroll’s Symbolic Logic (which you can access online through any public domain resource) and begin a program of study that has been proved to work since at least 1896.
You’ll have the benefit of being able to keep up with Larry and me, in real time—tonight, for example, we are going to work the examples that are intended to test our knowledge of the Trilateral Diagram. Larry has already told me that Symbolic Logic has started to change the way he thinks, which is the fundamental goal of any program and the fundamental indication that it has been installed successfully.
It also indicates that we have successfully installed at least one theoretical iteration of the program how to learn, all iterations of which can be summarized as doing the work until we achieve a result that proves our work is working.
The question then becomes: what do we do next?
In which Win Condition becomes One Condition.
I should start this section by asking you to recall the most significant error in my initial hypothesis—but since I didn’t specifically tell you that the mistake in question (pun intended) was the most significant, the request would neither be fair nor executable.
However, you might be able to figure it out anyway, especially since the answer in question (pun not intended, this time) includes words that are very likely within your field of vision.
This is to say that I’ve primed you.
Also, that the answer is prime.
Think about it if you want, and keep reading when you’re ready—
My initial hypothesis contained the words win condition.
These words were quickly—and correctly—modified to one condition.
What does this mean? As I initially hypothesized, the learning process consists of generating a then-so-called “win condition” and taking a specific action that you believe will yield the “win.” If the action does not yield “win,” evaluate whether the action itself was incorrect or whether it was simply performed incorrectly; if the action yields “win,” STOP.
“Wait,” Larry said, when I explained all of this to him. “Why stop?”
“Because any pass after the win pass is achieved is going to fail,” I said.
“Why is it going to fail?”
“Because it always does.”
This is true—although if anything can be said to be a false truth, it’s this. What I was arguing (incorrectly) was that as soon as you can achieve something at the standard you set for yourself, you should immediately stop trying to achieve it.
If you can play a passage of music accurately from memory (let’s just combine these two concepts into accurately, since having the music in front of you implies that your accuracy is still insecure), take it out of the rotation for a couple of days.
If you can play a chess opening accurately, take it out of the rotation for a couple of days.
Do not, ever-ever-ever, try to immediately repeat what you have just successfully performed. It is very likely that your next attempt will be inaccurate, which will introduce insecurity and second-guessing and a twenty-minute series of frustrated re-attempts at achieving what you had already achieved.
It would be superfluous to tell you that I confirmed all of this with multiple musicians, amateur and professional, but I’m going to tell you anyway. The first pass after a success is extremely difficult to execute, which is why I initially suggested that you skip it entirely.
“Come back to it in a few days,” I told Larry. “You’ll have the memory of your previous win, and you won’t have the memory of winning once and then failing ten times. That kind of thing will just jumble up your brain and make you worry that you’re going to fail this time.”
“I don’t think that’s right,” Larry said.
“But you know it’s true,” I said. “The first pass after a success nearly always fails. Why run the risk of introducing inconsistencies? Why not just stop and come back to it?”
“It might be true,” Larry said, “but it’s not right. If we really want to be magicians, we need to figure out how to play a passage at the standard we set for ourselves as many times as we want to.”
“We can!” I said. “You just need to put breaks in between! Just like you do with flashcards and deadlifts and everything else that involves a temporary personal best!”
Piano is, in many ways, like weightlifting. It takes an enormous amount of mental and physical effort, and you can injure your wrists if you’re not careful. Piano is, in many different ways, like using a flashcard system. You put the score in front of you and begin the process of establishing mental calls (or, as Larry puts it, positive controls) that will allow you to look at the score less and less often and then remove it completely.
Piano is also—as I told Larry over and over again during those weeks—like checking the stove. There are two ways to check the stove before you go to bed. One is once. The other is twenty times. Checking the stove (or the door locks, or the gas-heated fireplace, or anything else that needs to be set from 0 to 1 [or reset from 1 to 0]) is the kind of action that you need to do with both intent and attention. Once you have completed your check, resist the urge to re-confirm—because double-checking only confirms insecurity. If the first check (when performed with intent and attention) did not yield a trusted result, why should the second? Or the third? Or the twentieth?
With the stove, you need to stop after win or you will literally (no, figuratively [no, literally]) be there all night.
Why not, then, with the piano?
“Because that’s not what magicians do,” Larry said. “A magician doesn’t stop after one successful pass and put the music away.”
“The music is already put away,” I said. “The magician has it memorized.”
“And a real magician,” Larry said, “would be able to execute a tricky passage—a magic trick—over and over and over. Otherwise, how do you know that you’ve really mastered it?”
This was, of course, the actual question.
Which meant that—precisely as Daniel Kahneman said I would—I began immediately considering the easier, more convenient question: why is it that the first pass after a success (nearly) always fails?
“It’s because you can never recreate something exactly the same way twice,” I offered Larry, as my first pass at the answer.
“Why not?”
“Because physics.”
“That isn’t part of my understanding of physics.”
“The air molecules in the room are all different!” I said. “Everything’s different! It’ll never come out exactly the same way, which means you are trying to do something that is predetermined to fail, and so it does!”
“Okay,” Larry said. “I’ll agree, tenuously, that you can never recreate something exactly the way it went before” (as I, in fact, am not recreating this conversation exactly the way it went before [since the before lasted nearly forty-five minutes]) “but in that case we’re talking about details that would only be visible if you, like, amplified the two waveforms. Why can’t you recreate a pass in such a way that, even if it were not identical, it would still be indistinguishable to the listener?”
“What level of listener?” I asked. “How well is the listener paying attention?”
“How about indistinguishable to the pianist?”
This sent me back to the keyboard, for more research.
“It’s because of ego,” I said, once I had decided that was what it was. “The first pass after a success isn’t a working pass, it’s a proving pass. You’ve got to prove to yourself that you can do it, and proving always fails because proving is disintegrated. You can’t do and prove at the same time.”
“What do you mean?”
“Well,” I explained (and in this case I am explaining it to you [because, if I recall correctly, Larry understood it without explanation]), “when you’re doing something, your goals and your actions are unified. The entire pass is focused on achieving your predefined win condition through application of a specific technique or mental call.”
“Positive control.”
“Right,” I said. “But when you’re trying to prove something, your goals and your actions are no longer unified. Your goal is now about proving to yourself that you are the pianist you think you are, or something like that. It stops being about the music and starts being about you, and because of that it disintegrates and fails.”
“All right,” Larry said, “so play it without trying to prove anything.”
“But then what do you do?” I asked.
“What do you mean?” Larry asked (for real this time).
“I mean,” I told him, “what do you put on your spreadsheet?”
What I really meant, of course, was how do you define your next action? If you have already achieved your win condition, what is there that’s left for you to do besides attempt to recreate—which, as I noted both above and in my piano practice spreadsheet, nearly always fails?
It took me until March 4, 2022 to discover what I needed to do next. If you were to read my piano log, during those days before discovery, you would understand that I was thinking very carefully—and that every note, both on the laptop keyboard and the piano one, was evaluated in terms of whether it led me closer to or further from the answer I was seeking. There were more further froms than I’d care to admit, but since I care very much about the learning process I will admit them all as evidence that my hypothesis of how one learns works both at the piano practice level and at the thinking about piano practice level. In each practice session, I was achieving win conditions, testing actions (mental calls [positive controls]) that might allow me to repeat my wins, and failing. I was also evaluating each of those actions (calls [controls]) against the ultimate win condition—that is, how to repeatedly and/or indistinguishably execute a previously-achieved standard—until I finally uncovered the action that yields the result.
“I figured out how to play after win,” I told Larry, once we had prepared our dinner and poured our wine and sat down to tell each other about our days. “I kept asking myself, why isn’t this working—and you have to believe me that it wasn’t working—and then I finally figured out what to ask myself instead.”
“What?” Larry asked, although he was looking at me like he already knew the answer. He had heard me practicing, after all.
“After you win something, don’t just try to play it again the same way. Instead, ask yourself what you can do during this next pass to make it even better.”
“Bingo.”
I originally called this process “BXing,” since I would notate it on my piano practice spreadsheet as “3xCxBx” or “play three times at the designated standard, consecutively, making each pass your best ever.”
It is more appropriately called incrementalism.
I’ll let Larry define it for you, since he is much better at it than I am (and since he said in the previous volume that he wanted to write a dissertation on incrementalism at some point [and since I [[for now]] am the more prolific writer, this will have to serve]):
“Incrementalism is the process of discovering the transit from one node to another,” Larry said. “It needs to endure. To be robust. To persist. There are a lot of transits that don’t persist, that you might be able to do once but can’t replicate—and if you can’t replicate it, it’s worthless. So break it down. Pick one thing, understand what it is, and figure out what you need to do to achieve it.”
This definition, of course, meant that I needed to redefine my learning process. Instead of setting a win condition that defied replicability, I began every new increment of my piano practice by writing down my one condition.
What is the one additional thing that I want to achieve during my next attempt?
A one condition could be “play these eight measures from memory.” It could also be “curve my fourth finger on the Bb.” One conditions—like all iterations of 1—are both additive and infinite. Whatever you did before stays done; if it doesn’t, it means that you need to revert back to and rework a previous one condition. Whatever you do next becomes part of your process, not only for this pass but also for all subsequent passes. Functions (or actions) that don’t yield results get discarded; actions (or functions) that do yield results are notated as mental calls (or positive controls [or “curve fourth finger”]) until the words (or symbols) that ticker-tape through your brain as you play are no longer necessary.
At this point, the piece is learned.
At this point, the learning is integrated.
At this point, the integration is indistinguishable (to the listener) (to the pianist) (from magic).
At this point, you have achieved mastery.
Since one conditions are (as noted above) infinite, mastery is not a stopping point. Remember that the Magician is the first card in the Major Arcana, not the last—and you will very likely find at least twelve more ways to improve as you continue your journey.
And then—as all true magicians do at least once, and some heroes do a thousand times—you’ll be ready to share what you’ve learned with the world.
In which I forego all Competitive Enterprise.
Once I stopped trying to win things, I also stopped trying to win things.
This could be considered one of the more fundamental mental shifts—or, simply, fundamental shifts—in my history. Here, for example, is a previous correspondence between Larry and me, proving my previous interest in competition:
December 20, 1999
Larry –
Mark your calendar for Feb. 13, 2000 (obviously), 3:00 p.m. at the Junior High… I won Young Artists (along with a flutist and a harp player). I will be playing Mozart’s Concerto #8 in C Major. Attendance is mandatory (unless you have a REALLY good excuse). ^__^
Technically, even after hearing me play pit music like it was “The Wizard of Oz aka Nicole Dieker in Concert,” you still haven’t heard me play anything real.
I’m excited… you can finish the quote at your leisure…
Nicole
December 21, 1999
Wow, congratulations. That’s a great way to start the new (you can finish that if you want [even though it really doesn’t start until 2001]).
The harpist would be [REDACTED] I assume. Who is the flutist?
Maybe Clyde would let me conduct the Mozart for you (ha).
Way to go (the Wizard is very proud I’m sure).
Larry (scared but mostly excited)
December 21, 1999
You were right about [REDACTED], and the flutist is [ALSO REDACTED] (if I heard correctly). I don’t know either of them myself.
I would argue that millennium thing with you except it’s a shade overdone; I’ve argued both sides, just for the sake of conversation. (The basis of that “millennium begins in 2000” argument is that why shouldn’t there have been a year zero? Even if the people who invented the year system didn’t count it, it still existed. Babies still exist before they are a year old. The earth went through a full revolution… etc. etc.…)
But it’s really not that important… ^__^
Nicole
December 22, 1999
I accept the notion of there being a ZERO something (e.g. year)—any ‘c’ programmer would. But in this case, there probably wasn’t one and we are stuck with it. However, the calendar is an entirely arbitrary thing so we can bloody well do whatever we want.
In the long run, we’ll discover that the ambiguity was simply part of a plot to force us to accept TWO millennium celebrations (double the profits).
L
There is no way to tell you how many competitions I won as a young person (or, as in the example above, a Young Artist) except to say that there were at least two competitions I deliberately threw because I did not want to go through the hassle that accompanied the accolades.
I won a full scholarship to college, plus room and board, plus a living allowance and my own computer. The latter was the primary reason for my choosing that opportunity over the two other full-scholarship opportunities I received, since many college students were still queuing and vying in library computer labs—and since the computer my parents would very likely have bought me might have been less expensive and less powerful. The machine the university gave me, if my memory is accurate, retailed for around $2,000—appropriate, for the new millennium.
I used the computer to email Larry, as you already know.
I also won the university’s Distinguished Academic Excellence Award.
When I turned 39, I began looking for other things to win. In this case I was less interested in the accolades than I was in the access. I wanted to meet other people who would be competing at my level—other adults who had made the same decision to pursue excellence, that is—and to connect with distinguished judge-or-jury members who might have something useful to import.
“You want a shortcut,” Larry said.
“I want a way to meet other magicians.”
“If you and I become magicians—”
“When—”
“When you and I become magicians,” Larry continued, “the other magicians will want to meet us.”
This also felt like a shortcut, by which I mean it felt like a way to avoid a particular kind of work. How would another adult, in the process of pursuing excellence, know to get in touch with two people who had built themselves an Art Lab in a renovated 1930s cottage on the eastern bank of the Mississippi? It seemed like a lot to trust to chance and happenstance, when you could buy yourself entry into a piano competition or a chess tournament and meet a lot of interesting people even if you didn’t win.
“You don’t really think we’ll meet a lot of interesting people,” Larry said.
“No, I don’t,” I said. “Half of the people there will be well below our level and we won’t be interested in them. The winner-types won’t necessarily be interested in meeting us, either because they’ll be well above our level or because they’ll be taking the competition so seriously that they won’t want to spend time at the hotel bar.”
“Why will you be spending time at the hotel bar, then?”
“Because I’m not playing to win,” I said. “I’m playing to meet other magicians.”
“So we’re going to spend a lot of money and a lot of time preparing for you to play a piano competition that you probably won’t win, that you might not even take seriously—”
“I didn’t say I wasn’t going to take it seriously—”
“On the chance that we’ll meet one person who is also doing what we’re doing.”
“One is good!” I said. “Incrementalism!”
We did not end up entering any piano competitions when I was 39, but that was because most of them were canceled. We considered—actually, legitimately considered—entering a piano competition after I turned 40. I began preparing an hour’s worth of repertoire, beginning with Bach’s Ricercar a 6 (as Larry and I had just finished reading [or in my case, re-reading] Douglas Hofstadter’s Gödel, Escher, Bach) and ending with the virtuosic Sonata #3 for Piano by Walter Saul (whose daughter, if you read [or re-read] the first volume of my narrative, once spent an afternoon jumping off a knee-high ledge in an Alice dress that matched mine).
Before we had to decide whether my repertoire was prepared enough to compete, I decided—on my own—that I was no longer interested in competing.
I didn’t want zero-sum anymore.
I wanted infinite ones.
My commitment to noncompetitive integration was a one in itself—a very important one, as it turns out—and since every addition must require some kind of subtraction in order to maintain equilibrium, I began removing myself from various zero-sum games.
The first game to go was the dink/donk rating system. This was my term for the likes, dislikes, upvotes, downvotes, hearts, stars, and ratios that dominated the social internet. Dink/donks are not technically zero-sum, since one person may dink or donk multiple social media posts (and, depending on the platform, may dink or donk a specific post multiple times), but the system itself is zero-sum in the sense that it commands and consumes both your time and your attention—and that attention goes towards not only how many dinks/donks your own posts have received, but also how other people’s posts are doing. How many of us haven’t spent a day chicky-checking someone else’s account, to make sure their inappropriate post is getting appropriately donked (or, in the parlance that was popular when this paragraph was written, dunked)?
Some of us (though I hope none of you) have weaponized our donks into doxxes, hoaxes, and direct or ancillary canceling. When a sum of users can decide to zero someone else, the social media platform becomes not only unsocial (the obvious, overused word) but also unstable (the less obvious one). Because of that, we must check our status several times a day—or, in many cases, several times an hour.
In my case I simply deactivated them all. Twitter, Facebook, Instagram, and the comment section on my (now defunct) blog (as every comment system now comes with a dink/donk system [which is probably the worst thing to happen to comments since they were invented]). I stopped commenting on other people’s blogs. I logged out of Reddit and removed LessWrong from my phone.
This restored a sense of balance that I had not experienced since I first began using social media. Not only did I no longer have to wonder whether someone had dinked or donked me, whether I was next in line (for viral fame) (for cancellation), whether other users were responding (appropriately) (inappropriately) to (my) (anyone else’s) inputs— but, and more importantly, I no longer had to ask myself whether I should be checking any of those accounts. Once that option was no longer an option, the only option was to ask other questions, starting with “what do you really want to be doing with your time?”
People have often said that social media encourages activism. What it actually encourages is inactivity—which is why I chose to deactivate it. In return, I was able to increase my freelance activity by 66.66%, or from the aforementioned 600 to 1,000 words an hour. The economic gain that came from leaving the social media game was better than anything I could have gotten by playing (as I doubt that even virality could have improved the time-to-money equation by two-thirds [in part because virality would have reduced the words]).
The next game to go was the stock market. It was much harder to quit the market than it was to quit Twitter—but on February 17, 2022, I reclaimed nearly a quarter of a million dollars that had formerly been shared. My investments had been prudently stored in precisely what you might expect from a person who has written predominantly about personal finance since she started freelancing, which is a paid-by-the-word way of telling you I copy-pasted the Boglehead three-fund portfolio.
But mimicry is only ever the first step towards mastery—and once I had a full understanding of how the stock market both imitated and generated wealth, I realized the value of my investments.
That’s a paid-by-the-word way of telling you I sold.
Since words make money, let’s take a closer look at the most important word in the penultimate sentence. To realize, as you might remember, is to make real. Any investment portfolio that has not been realized is not yet real, at least not in terms of value (or net worth) that you own and control. This means that you can’t bank on it until—well, you can finish that sentence on your own.
The stock market is like social media, and not just because they both include S and M. Both enterprises run on the subscription model. Both are speculative. Both require content contributions that become part of an algorithm designed to provide value—but not to you. You only ever get the returns; whatever’s left over, divided among everyone else who shares the same indices.
The stock market also provides a steady stream of dinks and donks, ups and downs, bulls and bears. This continuous ticker is deliberately disequilibrating, just like any other dink/donk system. Even more deliberate are the constant reminders to buy and hold—to put money in, in other words, and to never, ever take it out.
The first person to realize the value of their investments wins, after all (this is literally how the stock market works, look it up)—and since the stock market is the ultimate zero-sum game, there are ultimatums built in to keep you playing. You wouldn’t want to miss out on all of that compound interest (even though returns are in no way equivalent to interest, which is by default guaranteed [after default, the guarantee only applies to $250,000 of your savings]). You wouldn’t want to be a panicky investor (even though the first person to sell always makes more money than the second person to sell [and he who hesitates has already lost]). You wouldn’t want to miss out on all of that potential market growth (even if it means missing out on everything else you could have done with that money [and all the growth it could have yielded if you stopped speculating and started learning [[speculate and learn being antonyms [[[and the best thing I’ve learned all day]]]).
“Such an exchange is a loss of power and independence,” Neal Stephenson wrote in The Confusion—just in case you found the previous paragraph confusing. Yes, the overall value of all relevant market indices are likely to continue to rise, even after our current bear has completed its corrective growl. Yes, you could earn the advertised 6% rate of return over time, and if that’s the best way for you to increase your net worth, do it. But it’s worth asking yourself whether there are other ways of increasing your value by 6%—or by 66.66%, as I did when I quit social media.
If the stock market worked as advertised, after all—well, I suppose it would be like if social media worked as advertised.
I withdrew from the exchange not quite soon enough to win—if I’d sold a month earlier, I would have realized an additional $20,000—but soon enough not to lose. I’m working towards achieving financial independence by age 50, on my own terms and in my own FDIC-insured accounts.
Shortly before his death, Jack Bogle began expressing concerns about the viability of the index fund. This realization also came a little too late—but it’s obvious, if you think about the market not as a financial problem but as a logical one. To complete a Trilateral Diagram successfully, you need to not only indicate what is stated but also calculate what is unstated; if someone tells you that all x are y, for example, you may have to figure out on your own that no x can be y1.
There’s a lot that is unstated, in terms of how the stock market functions (and the values generated by those functions). One of the reasons you get a tax break on your retirement contributions, for example, is to incentivize you to save for retirement. There are penalty charges associated with many types of early withdrawals, which are levied in part because people need to be disincentivized from reclaiming their contributions ahead of schedule—but because this disincentive does not actually work (if you really need the money, you’ll pay the penalty) the unstated reason for the penalty charges is to ensure that value may be derived from your contributions no matter what you do with them.
Why not just raise taxes, then? Why create a system that states that the best thing we can do for our financial future is put $500 into a speculative market every month (or, in many cases, more than $500 [if you’re maxing out both an IRA and an employer-sponsored retirement account]])? Why create a subsystem that states that we should continue investing on a regular basis regardless of market performance (also known as dollar-cost averaging), and a sub-subsystem that states that we should allocate our contributions across all available stocks and bonds?
I’m not going to answer that question for you. Take at least five minutes to speculate, and then complete the diagram on your own.
The last game I quit was both speculative and reflective, which is why it has an M on either side of its S. This would, of course, be the mainstream media—and by stepping out of the stream, I removed myself from a system that was attempting to captivate my attention by showing me my own face. If you think that’s narcissistic, visit any major news site and ask yourself how much of what you see is verifiably true. Then ask yourself what every unverifiable statement is leaving unstated—and why so many of these unstatements begin with you.
This may sound Orwellian, but it’s actually Carrollian. You can solve the problem yourself, with or without the Trilateral Diagram; I solved the problem by limiting myself to a daily newsletter that lists both verifiable facts and variable interpretations. It is also Carrollian, in the sense that it invariably presents iam yesterday and iam tomorrow but never, ever iam today—which means I am able to spend the rest of the day focusing on my work.
The newsletter is called Tangle.
It is written by Isaac Saul, Walter Saul’s nephew.
An integrated life includes more of these kinds of echoes than you might anticipate—but all echoes, even the cursed ones, are guaranteed returns. That’s why this trilateral diversion ended up in this version of the book (even though an editor [like Mark Burstein] might be averse to both the verso [in Latin] and the chorus [in Greek]). Larry would tell you, if you asked him, that the original function of the word diversion was to divide false from true. Since then, both the term and the practice have diverted.
Larry asked me, when I told all of this to him last night, why my draft had not converged on the importance of empiricism—that is, why I was not writing at this very moment about the idea that once I had disabled the sado-masochistic systems (yes, I finally said it [even though it’s just a paid-by-the-word way of saying dink/donk]) that deliberately inhibited critical thinking, I was better able to inhabit the world around me—and to evaluate (using my own five senses [and my own good sense]) its import.
“Not the whole world, of course,” he said. “Just the part of the world that affects you. The part of the world you can affect.”
“I tried,” I said. “I spent an hour trying to come up with a clever way of saying once I took all of the alerts off my phone, I became much more alert.”
“But you’re going to write about it later, right?”
“It’s always been a part of the book. This whole section is building up to what-it-is-ism.”
We decided to retain my original outline and return to the discussion of empiricism at a later point in the narrative. Until then, I’ll ask you to start thinking about how to derive truth from your own experiences. How to look past what it could be and what it should be and what it is not, and see only what it is.
You may take five minutes.
(You may take as long as you need.)
A brief digression on the end of a digression:
I lost the last two competitions I entered—though lost is both a correct and an incorrect description of what actually happened. The cozy mystery I sent to the Mystery Writers of America First Crime Novel Competition did not win (possibly because it was not strictly a crime novel), and neither did the love story I sent to the Masters’ Review.
The former was recently acquired by Shortwave Publishing, going from lost to found and transforming (through recognition [or re-cognition]) into the Larkin Day Mystery Series. The story of how I partnered with Shortwave will be detailed in Volume 3, “D4, C4”—which gives you an incentive not only to purchase the first volume of Larkin’s story, but also the next volume of mine.
The latter was published in Shortwave Magazine under the title “What If It Were This.” You can consider it a companion to the four volumes of WHAT IT IS and WHAT TO DO NEXT, since it was almost what this book became—until I asked myself why I was writing a fictional account of two people who began a scientific inquiry into the work required to become magic.
The real story is much more interesting. Reality always is, in part because it allows you to exchange confusion for power and independence.
Reality also allows you to exchange fallacy for value.
In which we Evaluate Our Narratives
When I handed my parents a stack of papers, not yet an inch thick, at an Asian-fusion brewpub and told them it was the first draft of an ongoing inquiry into understanding reality, they accepted it with the same care and interest as they’ve done everything else I’ve done (and read it, later, just as carefully [and with as many interested responses [[many of which made it into the final draft]]]).
We were at the Asian-fusion brewpub, which could equally—and perhaps more truthfully—have described itself as an Midwestern-fusion brewpub (the menu included pork tenderloin, mac and cheese, yakisoba, and a “umami burger”), because we had just finished hearing Joyce Yang perform Rachmaninoff’s Third Piano Concerto with Orchestra Iowa. This was not the first time Maestro Timothy Hankewich had attempted to program this particular piece; unfortunately, all previous programs had thrown the same exception.
“I have not had very good success with the Rachmaninoff Third Piano Concerto,” Hankewich said, during Orchestra Iowa’s 2021-2022 season announcement, “because it is such a beast. It is such a mountain of a work that I’ve had soloists cancel on me many times because it’s so nerve-wracking.”
When I first heard that story, I told Larry that he should learn the Rachmaninoff Third (or “Rocky 3,” as he calls it) so well that he could fill in for all of these other pianists who fail to master it. Larry told me he had other projects on his list—including a program that would help pianists master their own programs. This book is, in many ways, an accompaniment to Larry’s project—or perhaps his program is an accompaniment to mine. Both of us are working to help you (yes, you) understand what it is, and to use that information to decide what to do next.
We’re also working to counter the narrative that you (yes, you) are more likely to encounter—the story that suggests mastery is not worth working towards.
My first exposure to the Rachmaninoff Third Piano Concerto, after all, came when my parents rented the movie Shine. The four of us—my mother, my father, myself, and my sister—watched a highly fictionalized account of the life of pianist David Helfgott; the only aspect of the movie I can recall is an image of the young Helfgott getting beaten, by his father, while cowering in a bathtub. The concerto I can recall nearly perfectly (and could even after my initial exposure in 1997 [or possibly 1998 [[as I recorded the music in my mind and not my diaries]]]) because it was much better written (and better integrated) than the film.
I also recall my parents saying, afterwards, that they didn’t like the idea that Helfgott’s talent was directly linked to his torment. Helfgott’s sister, in her book Out of Tune: David Helfgott and the Myth of Shine, said much the same thing, calling the film “an unforgivable distortion of the truth.”
Whenever something false is created out of something true, you have to ask yourself where the value went. In this case, at least some of the value went towards the film industry and the actors involved; Shine cost $6 million to produce and earned $36 million at the box office, Geoffrey Rush earned an Academy Award. You could also argue (as I am going to) that the distorted narrative yielded value to an unforgivable lie—that ordinary people cannot create art. Even more unforgivable—that ordinary people should not want to.
To be an artist, the lie tells us, you must live an unforgivable life (either by choice or by circumstance [or, if you are the best kind of artist, both]). You must abandon your family, who only exists to keep you from being the person you were meant to become. You must focus entirely on your art (separate from your work, which you may also abandon) to the point that you are unable to maintain a job, or a relationship, or your health. You must play the Rachmaninoff Third Piano Concerto exactly once and then collapse on the stage—STOP AFTER WIN, as it were—even though the real David Helfgott continues to play the concerto and has never once disintegrated during performance.
The real David Helfgott also made his own movie. Hello I am David! is a 2015 documentary that attempts to present the reality of Helfgott’s life—but when Larry and I attempted to watch it, we couldn’t get more than 25 minutes in. “Pause it,” Larry said, after the following conversation between Helfgott’s wife and his business manager:
GILLIAN HELFGOTT: He thinks about rivers and trees and the sky and birds when he’s practicing. The notes—it’s not the notes going through his head, it is the music that’s going through his being.
NILS RUBEN: Somehow, part of his nature is that he doesn’t know how difficult it is, what he does.
GILLIAN HELFGOTT: Yes, that’s right!
NILS RUBEN: If he had known, how difficult the pieces he’s playing are, he wouldn’t be able to do it. He’s just living in this world, just like a child, in the good sense of that word. He doesn’t see the difficulty!
“It’s another lie,” Larry said. “They’re saying artists have to be special, somehow—childlike, in this case—and that excuses them from having to do the work.”
He meant, of course, that both the artists and the non-artists were excused. Helfgott is excused from having to be a better pianist than he actually is (I cannot technically evaluate Helfgott until I too can play the entire Rachmaninoff Third; Larry, who can play the entire Rachmaninoff Second, has seconded the professional assessment [which you may look up on your own]), and ordinary people are excused from having to be any kind of pianist at all.
If you don’t want to be a pianist, you can substitute whatever it is you’re working towards—or not working towards, if you’ve believed any of the lies people tell about artistry.
These are, not coincidentally, the same lies people tell about adulthood. You can excuse yourself, for innumerable reasons, from doing the work. You can spend your energy on the rise and fall of speculation—where are the goodies, who are the baddies—and avoid asking yourself what your life is really like and whether you really like it.
Because you already know what your life is like.
You also know what your narrative is like—and how much of that narrative is a lie.
When I turned 35, I published a two-volume novel called The Biographies of Ordinary People. This book, like many first novels, was an effort of mimicry rather than mastery; I wanted to write a “Millennial-era Little Women,” and, like Louisa May Alcott, ended up writing a fictionalized version of my own life.
That said, the novel is good—not quite magical, but well-constructed and well worth reading. Kirkus Reviews described it as “a shrewdly unique portrait of everyday America,” noting that “Dieker excels at depicting how real people think and act.” Larry told me, after he read it, that it was like I had written the entire book just for him.
“I wasn’t sure about the two of us,” he said, “until I read your book. Then I understood who you had become—and that you and I still shared the same Prime Directive, to learn something and to pass it on—and I think I fell in love with you all over again.”
When I wrote The Biographies of Ordinary People, I deliberately chose not to fictionalize my relationship with Larry—it seemed too subtle to put into narrative, although I seem to be having no trouble writing about it now. I did fictionalize my relationship with my family, which is to say that I extracted value out of truth and turned it into untruth. This, in turn, funded the idea at the core of the story—that ordinary people could in fact (and fiction) make art.
What I did not understand was that I was really writing about how ordinary people could become adults—although, to my credit, I was able to articulate my inchoate query to nearly every reviewer and interviewer that asked. “I loved how Little Women gave us four different models of adulthood,” I said (which is to say that I said something very like that). “I wanted to do the same thing with the three Gruber sisters.”
What I did not know was how much I still had to learn about becoming an adult.
I am realizing it now.
I will write about it soon.
In which we solve a Logic Problem.
As of this writing, at least one of the people I’ve written about this project has not yet written back. It would be presumptuous to imply who it is, of course—it was probably presumptuous of me to write this person in the first place, but many of the people whom I have contacted about my various volumes-in-progress have in fact responded (most take about three days, one took exactly 33 minutes), which indicates that my presumptions are not only probable but also, in many cases, correct.
Whether this particular individual ever responds is not up to me; in fact, the more I try to make it up to me the more likely I am to be let down. Our locus of control is limited, as Stephen Covey might say (and now I wonder if I might contact Stephen Covey [or I might have wondered, had I not just learned he was deceased]); we can only change the things we can control, as the Serenity Prayer suggests; and when you run that through Carroll’s system of logic you get something like this:
Not all things are controlled.
All things that are controlled are things that can be changed.
If you plot these statements on a Trilateral Diagram, you’ll quickly learn that they yield no conclusion—but you might have been able to figure that out even if you didn’t draw the diagram (and I hope you did [figure it out [[although I also hope you did [[[draw the diagram]]]]]]).
I want to skip ahead in Carroll’s book—even though it goes against his Rules for Learners—to see if there is some kind of Quadrilateral Diagram ahead of us; there’s a third sentence I want to add to this series—in fact, I almost added it automatically, in the preceding paragraph— but at this point in our problem-solving it’s still coming from a place of guessing instead of knowing.
Here is how it could go, if I have guessed right:
Not all things are controlled.
All things that are controlled are things that can be changed.
All changed things change the things that are controlled.
In other words—the more you change, the more you can change.
This, in Covey’s words, is your Circle of Influence. The more you are able to affect, the more effective you become.
This is the opposite of the Red Queen’s “it takes all the running you can do, to stay in the same place” (note her use of italics). Since the Red Queen suggests switching to French when things get confusing, I’ll note that this is also the opposite of plus ça change, plus c’est la même chose—a contradiction in terms, perhaps?
No. If the more you change, the more you can change appears to be in direct opposition to the more things change, the more they stay the same, you have to look at the codivisions between the terms—which, in their respective dictions, are you and chose.
This means that the difference between the more you change, the more you can change and plus ça change, plus c’est la même chose are the things you chose to change—and since all changed things change the things that are controlled, the less you choose to change, the less you can control.
If you are about to argue that I hinged this entire sequence on a false cognate, let’s cogitate the logic problem entirely in English.
If the more you change, the more you can change appears to be in direct opposition to the more things change, the more they stay the same, you have to look at the codivisions between the terms—which, irrespective of diction, are you and things.
This means that the difference between the more you change, the more you can change and the more things change, the more they stay the same are the things you choose to change (and now we understand the Red Queen’s italics).
Examples are necessary, as Larry once wrote—and so I will remind you that, earlier in the narrative, I told you that he and I were going to spend the evening working the examples that were intended to test our knowledge of the Trilateral Diagram. Instead, we spent the evening dealing with a backed-up sewer system.
This, as it turned out (pun intended [even though this particular pun is particularly disgusting]), was also a test of our ability to learn from example. We’d encountered the same problem eighteen months earlier—tree roots, in both cases—and at that time our plumber told us we needed to hire someone (preferably him) to clear out our sewer line once a year.
Neither of us made the choice to make the appointment—and in this case it was a systemic issue, since I am the Secretary of the Interior and Larry is the Secretary of the Exterior and both of us assumed that our sewer system belonged on the other side of the division of labor. Not that it matters whether our failure was systemic or systematic; the truth of the matter is that we did not choose to change anything, and so things remained out of our control. As certain things that would always be outside of our control—tree roots, in this case—continued to change, our situation remained the same.
Which is why it took all the running we could do, to stay in the same place.
Next year’s appointment is already on the calendar.
We also rescheduled our appointment with Symbolic Logic—and, when we met it again, discovered not the Quadrilateral Diagram (which may not in fact exist), but the Syllogism.
This means I have a chance to prove—formally, this time—whether my previous series of statements do in fact yield truth. Let’s begin:
Not all things are controlled.
All things that are controlled are things that can be changed.
All changed things change the things that are controlled.
The Universe of Discourse, in this case, is things (or, if we wanted to make a joke that has undoubtedly already been made, the entire universe of discourse).
The codivisional terms split up as follows:
x = things that are controlled
x1 = things that are not controlled
m = things that can be changed
m1 = things that cannot be changed
It seems like we need one more set of terms for this to work—we have a Duo of Bilateral Propositions right now, not a Trio. We also need to rewrite the third Proposition (also known as the Conclusion) with the correct Copula, changing the verb change to the verb is—and is there anything else we’re leaving out? Those of you who already know Symbolic Logic may already know the answer; I’m sharing my process with you—both logically and symbolically—to show you the process through which an answer becomes known.
We’ll begin again:
Not all things are controlled—this will be easier stated as some things are things that are not controlled, so I’ll go ahead and change that right now (proving my own Premiss as I do so).
All things that are controlled are things that can be changed—that seems fine as it is, but how do we get to the more you change, the more you can change? From there, the numbers fall into order and we can calculate the more (or less) you change, the more (or less) you control, but we can’t make that conclusion until we find a way to state that changed things change other things.
I mean, I’m pretty sure Newton stated it at some point—so maybe we should begin a third time and make his Third Law our first Premiss:
All things that can be changed are things that can change other things.
All things that can be controlled are things that can be changed.
All things that can be controlled are things that can change other things.
This looks much more harmonious than any of our previous Duos or Trios—so we’ll continue.
The Universe of Discourse, in this case, is things (or, if we wanted to make a joke that has undoubtedly already been made, the entire universe of discourse).
The codivisional terms split up as follows:
m = things that can be changed
m1 = things that cannot be changed
x = things that can change other things
x1 = things that cannot change other things
y = things that can be controlled
y1 = things that cannot be controlled
When you translate the Premisses and the Conclusion into abstract form, you get:
All m are x;
All y are m;
∴ All y are x.
The logic holds up, on both the Trilateral and Bilateral Diagrams—but I have not proved what I set out to prove, which (as you might recall) is the more you change, the more you can change.
Instead, I have proved that everything you can change has the potential to change other things—and I have implied that these changed things may or may not increase the number of things you can change in the future.
At this point I need to have an imagined conversation with the Great Love of My Life, since to have a real one would involve waking him up.
“It’s chess,” he told me. “It’s tempo.”
“It’s piano,” I told him. “It’s tempo.”
“Any move you make either increases your ability to navigate the chessboard or decreases it.”
“Any speed you take —
“Which can also be considered a move, speed is motion—
“Either increases your ability to navigate the keyboard or decreases it.”
You may imagine my words overlapping his, if you like (as we both come to this understanding at the same time [which is what all Great Loves really want]). You can imagine me telling him (in bed [where I would have gone to wake him up]) that I was so glad I asked, because this section of the book was feeling a little bootstrappy and self-helpy and (this section of the book in particular) suggestive.
“We should tell people both sides of the thing,” I told him, my head resting against his shoulder. “We only ever say x, which is the idea that your actions can increase your ability to navigate the world —”
“Which is true —”
“But we don’t ever say x-prime, which is the idea that your actions can also decrease your ability to navigate the world.”
“This is also true,” Larry said (and since I am already imagining double entendres I will imagine he just used one), “and it is where we need to begin our discussion of what-it-is-ism.”
In which we begin our discussion of What-it-is-ism.
“When did you discover—or come to understand —What-it-is-ism?” I asked Larry (for real this time [and our conversation follows, in real time]).
“When I realized that denying it wasn’t working.”
“Ooh, that’s interesting. Okay. So—was there an event in your life that precipitated that?”
“No. I think it was gradual. I think—one of the things you’ll notice, that you’ve already noticed, and that most people will notice, hopefully, whenever they pursue anything with a fair amount of diligence —”
“Mm-hmm —”
“Is that we have a tendency to deny reality.”
“Yes! Because it doesn’t fit what we think it ought to be.”
“It doesn’t fit our narrative.”
‘Yes! Correct-correct.”
“And, of course, this may be pleasant in the short term, to get out of some deficit that comes from not being able to do things the way you want to.”
“Sure.”
“But in the long term it doesn’t accomplish anything.”
“But what’s the difference between Walter Mitty—is that—I’ve never seen that movie —”
“The Secret Life of Walter Mitty.”
“And that’s based on a story —”
“Uh-huh —”
“And his kind of daydreaming is viewed as productive because it helps him escape his humdrum life but other kinds of daydreaming aren’t, and, I mean—do you even think that kind of daydreaming is?”
“I don’t think there’s anything wrong with daydreaming at all. Daydreaming may be important. You have to establish some sort of want. I want to be this way, I want that thing to happen. Okay? And then you set out to make that happen. The problem only occurs if you convince yourself that something’s happening when it isn’t.”
“Oh gosh, that’s good. Yep.”
“I think daydreaming, fantasizing, nothing wrong with it at all. In fact, it might be necessary. But—when you’re working—if you, for instance, let’s just say with the ornaments.”
(In this case Larry is referring to the ornaments in Chopin’s Nocturne in E minor, Op. posth. 72, No. 1.)
“Yeah!”
“Let’s say you have an idea on how you want to play those ornaments.”
“Mm-hmm.”
“And if you play them, and you convince yourself that they’ve passed —”
“Mm-hmm!”
“When they didn’t —”
“Right!”
“Then you’re not helping yourself.”
“Right.”
“That’s—it is what it is.”
“Exactly.”
“And there’s nothing—we think there’s something wrong with what it is because it’s not what we want. But there isn’t anything wrong with what it is. What it is is a beautiful thing, because you can’t get—I mean, it’s one of the things you have to go through to get where you want to go.”
“Right.”
(A pause. Then I continue:)
“Do you think more pianists—or craftspeople of any type of all, but we’ll stick specifically with pianists —”
“Uh-huh —”
“Are they more likely to think this passes, when they know it doesn’t pass, or are they more likely to think in the scenario of performance, I will draw upon some strength I did not previously know I had, just like The Karate Kid or whatnot, you know —”
“That’s bullshit, though. We know that’s bullshit.”
“I’ve fallen for it, here and now, and I don’t fall for it so much anymore —”
“No, you don’t. That’s been a major change for you. You’re much more what-it-is.”
“Right. It’s not the oh, I can get this, when you’ve not gotten it five times in a row. Oh, I can get this, because I got it once seven days ago by chance, which means I can get it.”
“Right. And it’s tempting, I mean, I’ve done that so much.”
“The aberration is not—the norm? The mean? I don’t know what the right word is here.”
“What’s the aberration?”
“Well, we take the aberration, whether it’s, you know, in music, the one time we get the pass right, for some reason. Or the one time the person we have a crush on, like, has a conversation with us. For some reason. We ignore all of the other times, all of the other signals that things are not what we want them to be.”
“Good point. Yes. Because we’re working on our narrative.”
“Mm-hmm.”
“Well, it’s very difficult I think to suspend working on one’s narrative. But working on your narrative is not a conducive frame of mind in which to work on your craft.”
“Correct. Correct! Correct.”
This is how Larry and I talk, nearly all the time—which is to say this conversation is not an aberration, but the mean, means, and meaning of our union. Every night, the necessary diversion (and you will remember how Larry defined diversion) that allows us to move closer to what it is and further away from what it is not. The craft we narrate to each other becomes the narrative we are crafting together, comparing our reflections to reality so that we may discover—as Alice once did—what is found there.
If you’ve already read Through the Looking Glass, you know what’s coming next.
If you’ve already read Symbolic Logic, you know what we still have to learn.
Luckily—for you and for us—you’ve already read our theory about how one learns things, and have come to the logical conclusion that both precedes and succeeds the process of learning. If our craft (techne) and our narrative (logos) have been successfully integrated (and sufficiently advanced) this conclusion may even increase your ability to navigate the world around you.
Your move.
You are reading WHAT IT IS and WHAT TO DO NEXT by Nicole Dieker.
You may continue reading: